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A Posteriori Truncation Error Detection with 
Application to Grid Adaptation 

Giovanni Lapent a 

Theoretical Division, Los Alamos National Laboratory, Lo.9 Alamos NM87545, 
USA 

Abstract 

We discuss grid adaptation for application to AMR and ALE codes. Two new con- 
tributions are presented. First, a new method to locate the regions where the trun- 
cation error is being created due to an insufficient accuracy: the operator recovery 
error origin (OREO) detector. The OR.EO detector is automatic, reliable, easy to 
implement and extremely inexpensive. Second, a new grid motion technique is pre- 
sented for application to ALE codes. The method is based on the Brackbill-Saltzman 
approach hiit it is directly linked to the OR.EO detector and moves the grid auto- 
matically to minimize the error. 
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1 Introduction 

Grid adaptation can be achieved by grid refinement (i.e. adding more grid 
points) in some selected areas or by grid motion (i.e. moving grid points to 
regions of interest from regions of lesser interest). In the first case, the AMR. 
method [2] is obtained. In the second case, the ALE method [5] is obtained. 
In both cases we need guidance. We need to know what interesting mean. 
Often, interest is defined based on the knowledge of the solution. If we know 
the solution, we know where more accuracy is required. However, we do not, 
in general, know the solution. Sa we need error detectors which tell us where 
the error is larger. 

The present paper describes a new error detector: the operator recovery error 
origin (0R.EO) detector [7]. 

For AMR. codes, the ORE0 detector provides accurate and automatic deter- 
mination of where the discretization error is being generated. This knowledge 
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is directly used by the AMR method to refine or to coarsen. 

For ALE codes, the knowledge of the error needs to be supplemented by a 
method to move the grid. Given the error what new grid should we use? To 
answer this additional problem typical of the ALE method we also present a 
new technique citelapenta based on the Brackbill-Saltzman approach [9]. 

Examples are presented to illustrate the new methods. 

2 Operator Recovery Computation of the Local Truncation Error 

In a previous paper [7], we have proposed a new error origin detector based on 
the extension of the gradient recovery error estimator [l]. We have named the 
approach operator recover3 error ori.9in (OREO) detector since it extends 
to any operator the method used for the gradient operator by the gradient 
recovery error estimator. Below, we summarize briefly the procedure involved 
in its definition and implementation. 

For the sake of definiteness, we shall assume a general N-dimensional grid 
(where one of the dimensions could be time) where a vector field v, is node 
centered. For notation, we label the cells with c and the nodes with n, using 
further the notation n(c) to indicate the nodes neighboring cell c and c(n) to 
indicate the cells neighboring node n. 

We consider a general multi-dimensional non-linear partial differential opera- 
tor: 

Equation (1) summarizes the most, general operator acting on a function q ( x )  
defined on the multidimensional space x. 

(1) 

Equation (1) is discretized on a grid with N nodes x,: 

From the discretized field q, and from the discretized operator X ,  applied to 
q, defined only on the grid nodes, it is possible to reconstruct two functions 
defined everywhere in the continuum space x: 

where S(x - x,) is the b-spline basis function of order ! for interpolation. [4] 
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The local truncation error is defined as the difference between the linear in- 
terpolation of the discretized operator applied to the discretized field xq(x) 
and the exact differential operator applied to the linear interpolation of the 
discretized field q(x): 

e := 6(x) - %(XI (4) 

The average local truncation error on any given cell c is defined as the L2 
norm: 

where e,  is the average local truncation error over cell c and V, is the cell 
volume. 

3 Variational Grid Adaptation Based on Error Detectors 

We have recently proposed a new approach [6] to variational grid adapta- 
tion [91 based of the local truncation error defined above. The method can 
be constructed starting from the following equidistribution theorem proven in 
Ref. [6] 

THEOREM: In a optimal grid, defined as a grid that minimixes the local trun- 
cation error according to the minimzation principle 

the product of the local tr.clncat.ion, error in any cell .I b y  the cell volume & 
(given by th,e ,Jacobian J = Jj) is constant: 

The equidistribution theorem is applied solving the following Euler-Lagrange 
equations: 

This approach creates a grid where IeilV, is constant. Note that the equations 
above are identical to the equations used by the Brackbill-Saltzman variable 
diffusion method [9]. The primary innovation is that the monitor function 
is now directly linked with the local truncation error instead of being left 
undefined. In the typical implementations of the Brackbill-Saltzman method, 
the monitor function is defined heuristically by the user. The use of the OR,EO 
detector proposed herc, results in a more accurate scheme [6]. 
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4 ALE Example 

We have applied the grid rezoning described above to a standard ALE ccjde [5,8] 
and we have tested i t  in a number of problems. Here we limit the discussion 
to the classic spherical 1D implosion test proposed by Noh [lo]. A gas with 
y = 5/3 initially has p = 1, e = loF4 and uniform velocity TL = -1 (except in 
the center where U ( T  = 0) = 0). The problem represents a serious challenge 
for Lagrangian calculations and the solution is known to suffer from serious 
wall heating due to the use of artificial viscosity to capture shocks. Note that 
we are not using artificial heat conduction [lo] (a tool to mitigate the wall 
heating problem) precisely to highlight the trouble of Lagrangian calculations 
for the present case , 

The results of an ALE calculation using the adaptive grid is compared with a 
reference standard Lagrangian calculation. Figure 1 shows the density at the 
end of the Lagrangian and ALE calculation. The use of adaptive grid results 
in a much improved solution. The reason for the improvement is explained by 
the sharper resolution of the shock achieved by the adaptation. As noted in 
the original paper by Noh [lo], a sharper resolution of the shock also implies 
a reduction of wall heating, as obseved in Fig. 1 for the ALE case. 

The use of grid adaptation based on the ORE0 detector results in an auto- 
matic method to increase the accuracy of the ALE method. 
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Fig. 1. Noh's spherical benchmark: comparison of the density at the end ( t  = 0.6), 
for a Lagrangian (dashed) and ALE (solid line) calculation. The exact solution is 
also shown (dotted line). 
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4.1 AMR Example 

To investigate the performance of the OR.EO detector in 2D, we have applied it 
to results obtaincd with CLAWPACK [ll]. CLAWPACK is a publicly available 
software [12] based on an AMR, solution [2] of the conservation laws. We have 
applied the code to the solution of the gas dynamics equations for the Colella’s 
wedge problem [3]. A planar A4 = 10 shock is incident on an oblique surface; 
the angle between the shock direction and the surface is n/6. The actual 
computed results at time t = 0.2 for a 240x120 grid are shown in Fig. 2 where 
all the expected features [3] can be recognized. 

The OR.EO detector is computed based on the results obtained from CLAW- 
PACK using Algorithm 3. The detector is shown in Fig. 3 for a simulation with 
a grid 120x60. For comparison we also provide an estimate of the actual error, 
computed by difference between the solution on a 120x60 grid and the more 
accurate solution on a 240x120 grid. Clearly the OR,EO detector is successful 
in detecting all origins of errors. The shocks are all captured; the slip surface 
rolling lip under the shock is evident. All features are detected. 

For reference, Fig. 34: shows also a similar analysis conducted on another 
possible candidate for error detection often used in the literature. The detector, 
which we name warp indicator for convenience, measure the local error as the 
variance among the different values obtained at a node when extrapolating the 
internal energy from the four directions (backward and forward along x and 
backward and forward along y). The analysis in Fig. 3-c shows that the two 
rightmost planar shocks are captured well, while the top and bow shocks are 
barely visible. All the structure inside the rolling up region within the outer 
shocks is lost: no slip surface is measured and the internal shock is also lost. In 
practice the warp indicator is oFten supplemented by other ad hoc detectors 
to pick up all shocks, but still the rolling up region and the slip surfaces are 
often left, iindetect,ed. 

The OIEEO detector does not miss any feature and can be used reliably alone 
without any other ad hoc detector. 
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Fig. 2. 2D Gas Dynamics (Eulerian form)- Colella’s benchmark on a 240xl20grid. 
Density, velocity and internal energy at the end of a Eulerian calculation (t = 0.2). 
Results obtained using CLAWPACK. 
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Fig. 3. 2D Gas Dynamics - Colella's benchmark on a 120x60 grid at t = 0.2. Com- 
parison of the global truncation error (a) with the ORE0 detector (b), and the 
warp indicator (c). 
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